炭酸ガス施用下の促成トマト栽培における養分吸収特性と増肥による収量への影響

促成トマト栽培での炭酸ガス施用では、果実および茎葉中の養分含有率に大きな増加は認められない。また、炭酸ガス施用下での増肥でも養分含有率に大きな増加は認められない。養分吸収量は乾物重の増加に伴い多くなる。増肥によって可販果収量は標準施肥より増加する。

農業研究センター生産環境研究所土壌環境研究室（担当者: 奥田裕二）
農産園芸研究所野菜研究室（担当者: 前原祥大）

研究のねらい

促成トマト栽培では炭酸ガスを施用することで、可販果数が増え、1 果実が重くなることで可販果収量は増加する（農業研究成果情報 No.770 促成トマトにおける炭酸ガス施用量が果実肥大及び可販果収量に及ぼす影響）が、炭酸ガス施用下における養分吸収特性および施肥管理技術についてはまだ知見が少ない。

そこで、炭酸ガス施用の有無および炭酸ガス施用下における施肥量の違いが促成トマトの養分吸収特性に及ぼす影響について解明するとともに、施肥量と収量との関連性について明らかにする。

研究の成果

1. 果実および葉の養分含有率は、炭酸ガス施用による大きな増加はない。炭酸ガス施用により、無施用に対して総乾物重は増加し、窒素、リン酸およびカリウムの養分吸収量も増加する（表１）。
2. 炭酸ガス施用下で増肥しても、果実および葉の養分含有率に増加傾向は認められず、養分吸収量は乾物重の増加に伴い多くなる（表２）。
3. 炭酸ガス施用下で増肥することで、総収量および可販果収量は標準施肥区より増加する（図１）。

普及上の留意点

1. 試験は隔離ベッドに黒ボク土（農業研究センター内畑の土壌）を充填し、点滴チューブを用いた点滴かん水施肥で実施した。
2. ベッド内の土壌水分は pF1.7 ～2.3 になるようかん水量を調整した。
3. 炭酸ガスは換気部密閉時 600ppm、開放時 400ppm になるように施用した。
4. 追肥は、窒素：リン酸：カリが 14：8：25 の割合の肥料を用いた。
5. 供試品種は「桃太郎ピース」である。
表1．炭酸ガス施用の有無による平均養分含有率、総乾物重および養分吸収量

<table>
<thead>
<tr>
<th>年度</th>
<th>試験区</th>
<th>果実(%)</th>
<th>葉(%)</th>
<th>総乾物重(g/株)</th>
<th>養分吸収量(g/株)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>P2O5</td>
<td>K2O</td>
<td>N</td>
</tr>
<tr>
<td>H27</td>
<td>炭酸ガスあり</td>
<td>2.0</td>
<td>0.8</td>
<td>3.5</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>炭酸ガスなし</td>
<td>1.9</td>
<td>0.8</td>
<td>3.2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

注1) 炭酸ガスはH27年12月3日からH28年6月1日まで施用した。
注2) 総乾物重は果実、葉、茎、摘果等の総計値。
注3) 吸収量(g/株)=各部位乾物重(g/株)×養分含有率(%)。
注4) ()内の数値は炭酸ガスなしを100としたときの指数。

表2．炭酸ガス施用下における施肥量の違いによる養分含有率、総乾物重および養分吸収量

<table>
<thead>
<tr>
<th>年度</th>
<th>試験区</th>
<th>果実(%)</th>
<th>葉(%)</th>
<th>総乾物重(g/株)</th>
<th>養分吸収量(g/株)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>P2O5</td>
<td>K2O</td>
<td>N</td>
</tr>
<tr>
<td>H28</td>
<td>標準区</td>
<td>1.8</td>
<td>0.8</td>
<td>3.9</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>追肥10%増区</td>
<td>2.1</td>
<td>0.9</td>
<td>4.0</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>追肥20%増区</td>
<td>2.1</td>
<td>0.9</td>
<td>4.1</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>追肥30%増区</td>
<td>2.1</td>
<td>0.8</td>
<td>4.0</td>
<td>3.3</td>
</tr>
<tr>
<td>H29</td>
<td>標準区</td>
<td>1.8</td>
<td>0.8</td>
<td>3.8</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>追肥10%増区</td>
<td>1.9</td>
<td>0.8</td>
<td>3.8</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>追肥20%増区</td>
<td>1.9</td>
<td>0.8</td>
<td>3.9</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>追肥30%増区</td>
<td>1.8</td>
<td>0.8</td>
<td>3.7</td>
<td>3.3</td>
</tr>
</tbody>
</table>

注1) H28年度は炭酸ガスをH28年11月1日からH29年5月8日まで施用した。
注2) H29年度は炭酸ガスをH29年12月1日からH30年4月23日まで施用した。
注3) 追肥は第1果房肥大期から標準区の量で施用を開始し、炭酸ガス施用開始時から各試験区量に変更した。
注4) 標準区は追肥の窒素施用量を90mg/株/日で施用した。
注5) 増肥区は窒素、リン酸およびカリウムとも比較区の施用量より各増加率の割合で施用した。